Files
rustfs/crates/ahm/tests/scanner_optimization_tests.rs
houseme d934e3905b Refactor telemetry initialization for non-production environments (#789)
* add dep `scopeguard`

* improve for tracing

* fix

* fix

* improve code for import

* add logger trace id

* fix

* fix

* fix

* fix

* fix
2025-11-05 00:55:08 +08:00

381 lines
12 KiB
Rust

// Copyright 2024 RustFS Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use rustfs_ahm::scanner::{
checkpoint::{CheckpointData, CheckpointManager},
io_monitor::{AdvancedIOMonitor, IOMonitorConfig},
io_throttler::{AdvancedIOThrottler, IOThrottlerConfig},
local_stats::LocalStatsManager,
node_scanner::{LoadLevel, NodeScanner, NodeScannerConfig, ScanProgress},
stats_aggregator::{DecentralizedStatsAggregator, DecentralizedStatsAggregatorConfig},
};
use std::time::Duration;
use tempfile::TempDir;
#[tokio::test]
async fn test_checkpoint_manager_save_and_load() {
let temp_dir = TempDir::new().unwrap();
let node_id = "test-node-1";
let checkpoint_manager = CheckpointManager::new(node_id, temp_dir.path());
// create checkpoint
let progress = ScanProgress {
current_cycle: 5,
current_disk_index: 2,
last_scan_key: Some("test-object-key".to_string()),
..Default::default()
};
// save checkpoint
checkpoint_manager
.force_save_checkpoint(&progress)
.await
.expect("Failed to save checkpoint");
// load checkpoint
let loaded_progress = checkpoint_manager
.load_checkpoint()
.await
.expect("Failed to load checkpoint")
.expect("No checkpoint found");
// verify data
assert_eq!(loaded_progress.current_cycle, 5);
assert_eq!(loaded_progress.current_disk_index, 2);
assert_eq!(loaded_progress.last_scan_key, Some("test-object-key".to_string()));
}
#[tokio::test]
async fn test_checkpoint_data_integrity() {
let temp_dir = TempDir::new().unwrap();
let node_id = "test-node-integrity";
let checkpoint_manager = CheckpointManager::new(node_id, temp_dir.path());
let progress = ScanProgress::default();
// create checkpoint data
let checkpoint_data = CheckpointData::new(progress.clone(), node_id.to_string());
// verify integrity
assert!(checkpoint_data.verify_integrity());
// save and load
checkpoint_manager
.force_save_checkpoint(&progress)
.await
.expect("Failed to save checkpoint");
let loaded = checkpoint_manager.load_checkpoint().await.expect("Failed to load checkpoint");
assert!(loaded.is_some());
}
#[tokio::test]
async fn test_local_stats_manager() {
let temp_dir = TempDir::new().unwrap();
let node_id = "test-stats-node";
let stats_manager = LocalStatsManager::new(node_id, temp_dir.path());
// load stats
stats_manager.load_stats().await.expect("Failed to load stats");
// get stats summary
let summary = stats_manager.get_stats_summary().await;
assert_eq!(summary.node_id, node_id);
assert_eq!(summary.total_objects_scanned, 0);
// record heal triggered
stats_manager
.record_heal_triggered("test-object", "corruption detected")
.await;
let counters = stats_manager.get_counters();
assert_eq!(counters.total_heal_triggered.load(std::sync::atomic::Ordering::Relaxed), 1);
}
#[tokio::test]
async fn test_io_monitor_load_level_calculation() {
let config = IOMonitorConfig {
enable_system_monitoring: false, // use mock data
..Default::default()
};
let io_monitor = AdvancedIOMonitor::new(config);
io_monitor.start().await.expect("Failed to start IO monitor");
// update business metrics to affect load calculation
io_monitor.update_business_metrics(50, 100, 0, 10).await;
// wait for a monitoring cycle
tokio::time::sleep(Duration::from_millis(1500)).await;
let load_level = io_monitor.get_business_load_level().await;
// load level should be in a reasonable range
assert!(matches!(
load_level,
LoadLevel::Low | LoadLevel::Medium | LoadLevel::High | LoadLevel::Critical
));
io_monitor.stop().await;
}
#[tokio::test]
async fn test_io_throttler_load_adjustment() {
let config = IOThrottlerConfig::default();
let throttler = AdvancedIOThrottler::new(config);
// test adjust for load level
let low_delay = throttler.adjust_for_load_level(LoadLevel::Low).await;
let medium_delay = throttler.adjust_for_load_level(LoadLevel::Medium).await;
let high_delay = throttler.adjust_for_load_level(LoadLevel::High).await;
let critical_delay = throttler.adjust_for_load_level(LoadLevel::Critical).await;
// verify delay increment
assert!(low_delay < medium_delay);
assert!(medium_delay < high_delay);
assert!(high_delay < critical_delay);
// verify pause logic
assert!(!throttler.should_pause_scanning(LoadLevel::Low).await);
assert!(!throttler.should_pause_scanning(LoadLevel::Medium).await);
assert!(!throttler.should_pause_scanning(LoadLevel::High).await);
assert!(throttler.should_pause_scanning(LoadLevel::Critical).await);
}
#[tokio::test]
async fn test_throttler_business_pressure_simulation() {
let throttler = AdvancedIOThrottler::default();
// run short time pressure test
let simulation_duration = Duration::from_millis(500);
let result = throttler.simulate_business_pressure(simulation_duration).await;
// verify simulation result
assert!(!result.simulation_records.is_empty());
assert!(result.total_duration >= simulation_duration);
assert!(result.final_stats.total_decisions > 0);
// verify all load levels are tested
let load_levels: std::collections::HashSet<_> = result.simulation_records.iter().map(|r| r.load_level).collect();
assert!(load_levels.contains(&LoadLevel::Low));
assert!(load_levels.contains(&LoadLevel::Critical));
}
#[tokio::test]
async fn test_node_scanner_creation_and_config() {
let temp_dir = TempDir::new().unwrap();
let node_id = "test-scanner-node".to_string();
let config = NodeScannerConfig {
scan_interval: Duration::from_secs(30),
disk_scan_delay: Duration::from_secs(5),
enable_smart_scheduling: true,
enable_checkpoint: true,
data_dir: temp_dir.path().to_path_buf(),
..Default::default()
};
let scanner = NodeScanner::new(node_id.clone(), config);
// verify node id
assert_eq!(scanner.node_id(), &node_id);
// initialize stats
scanner.initialize_stats().await.expect("Failed to initialize stats");
// get stats summary
let summary = scanner.get_stats_summary().await;
assert_eq!(summary.node_id, node_id);
}
#[tokio::test]
async fn test_decentralized_stats_aggregator() {
let config = DecentralizedStatsAggregatorConfig {
cache_ttl: Duration::from_millis(100), // short cache ttl for testing
..Default::default()
};
let aggregator = DecentralizedStatsAggregator::new(config);
// test cache mechanism
let _start_time = std::time::Instant::now();
// first get stats (should trigger aggregation)
let stats1 = aggregator
.get_aggregated_stats()
.await
.expect("Failed to get aggregated stats");
let first_call_duration = _start_time.elapsed();
// second get stats (should use cache)
let cache_start = std::time::Instant::now();
let stats2 = aggregator.get_aggregated_stats().await.expect("Failed to get cached stats");
let cache_call_duration = cache_start.elapsed();
// cache call should be faster
assert!(cache_call_duration < first_call_duration);
// data should be same
assert_eq!(stats1.aggregation_timestamp, stats2.aggregation_timestamp);
// wait for cache expiration
tokio::time::sleep(Duration::from_millis(150)).await;
// third get should refresh data
let stats3 = aggregator
.get_aggregated_stats()
.await
.expect("Failed to get refreshed stats");
// timestamp should be different
assert!(stats3.aggregation_timestamp > stats1.aggregation_timestamp);
}
#[tokio::test]
async fn test_scanner_performance_impact() {
let temp_dir = TempDir::new().unwrap();
let node_id = "performance-test-node".to_string();
let config = NodeScannerConfig {
scan_interval: Duration::from_millis(100), // fast scan for testing
disk_scan_delay: Duration::from_millis(10),
data_dir: temp_dir.path().to_path_buf(),
..Default::default()
};
let scanner = NodeScanner::new(node_id, config);
// simulate business workload
let _start_time = std::time::Instant::now();
// update business metrics for high load
scanner.update_business_metrics(1500, 3000, 500, 800).await;
// get io monitor and throttler
let io_monitor = scanner.get_io_monitor();
let throttler = scanner.get_io_throttler();
// start io monitor
io_monitor.start().await.expect("Failed to start IO monitor");
// wait for monitor system to stabilize and trigger throttling - increase wait time
tokio::time::sleep(Duration::from_millis(1000)).await;
// simulate some io operations to trigger throttling mechanism
for _ in 0..10 {
let _current_metrics = io_monitor.get_current_metrics().await;
let metrics_snapshot = rustfs_ahm::scanner::io_throttler::MetricsSnapshot {
iops: 1000,
latency: 100,
cpu_usage: 80,
memory_usage: 70,
};
let load_level = io_monitor.get_business_load_level().await;
let _decision = throttler.make_throttle_decision(load_level, Some(metrics_snapshot)).await;
tokio::time::sleep(Duration::from_millis(50)).await;
}
// check if load level is correctly responded
let load_level = io_monitor.get_business_load_level().await;
// in high load, scanner should automatically adjust
let throttle_stats = throttler.get_throttle_stats().await;
println!("Performance test results:");
println!(" Load level: {load_level:?}");
println!(" Throttle decisions: {}", throttle_stats.total_decisions);
println!(" Average delay: {:?}", throttle_stats.average_delay);
// verify performance impact control - if load is high enough, there should be throttling delay
if load_level != LoadLevel::Low {
assert!(throttle_stats.average_delay > Duration::from_millis(0));
} else {
// in low load, there should be no throttling delay
assert!(throttle_stats.average_delay >= Duration::from_millis(0));
}
io_monitor.stop().await;
}
#[tokio::test]
async fn test_checkpoint_recovery_resilience() {
let temp_dir = TempDir::new().unwrap();
let node_id = "resilience-test-node";
let checkpoint_manager = CheckpointManager::new(node_id, temp_dir.path());
// verify checkpoint manager
let result = checkpoint_manager.load_checkpoint().await.unwrap();
assert!(result.is_none());
// create and save checkpoint
let progress = ScanProgress {
current_cycle: 10,
current_disk_index: 3,
last_scan_key: Some("recovery-test-key".to_string()),
..Default::default()
};
checkpoint_manager
.force_save_checkpoint(&progress)
.await
.expect("Failed to save checkpoint");
// verify recovery
let recovered = checkpoint_manager
.load_checkpoint()
.await
.expect("Failed to load checkpoint")
.expect("No checkpoint recovered");
assert_eq!(recovered.current_cycle, 10);
assert_eq!(recovered.current_disk_index, 3);
// cleanup checkpoint
checkpoint_manager
.cleanup_checkpoint()
.await
.expect("Failed to cleanup checkpoint");
// verify cleanup
let after_cleanup = checkpoint_manager.load_checkpoint().await.unwrap();
assert!(after_cleanup.is_none());
}
pub async fn create_test_scanner(temp_dir: &TempDir) -> NodeScanner {
let config = NodeScannerConfig {
scan_interval: Duration::from_millis(50),
disk_scan_delay: Duration::from_millis(10),
data_dir: temp_dir.path().to_path_buf(),
..Default::default()
};
NodeScanner::new("integration-test-node".to_string(), config)
}
pub struct PerformanceBenchmark {
pub _scanner_overhead_ms: u64,
pub business_impact_percentage: f64,
pub _throttle_effectiveness: f64,
}
impl PerformanceBenchmark {
pub fn meets_optimization_goals(&self) -> bool {
self.business_impact_percentage < 10.0
}
}