Files
rustfs/crates/ecstore/benches/comparison_benchmark.rs
houseme 5826396cd0 refactor: Restructure project layout and clean up dependencies (#30)
This commit introduces a significant reorganization of the project structure to improve maintainability and clarity.

Key changes include:
- Adjusted the directory layout for a more logical module organization.
- Removed unused crate dependencies, reducing the overall project size and potentially speeding up build times.
- Updated import paths and configuration files to reflect the structural changes.
2025-07-02 19:33:12 +08:00

332 lines
13 KiB
Rust

// Copyright 2024 RustFS Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Reed-Solomon SIMD performance analysis benchmarks
//!
//! This benchmark analyzes the performance characteristics of the SIMD Reed-Solomon implementation
//! across different data sizes, shard configurations, and usage patterns.
//!
//! ## Running Performance Analysis
//!
//! ```bash
//! # Run all SIMD performance tests
//! cargo bench --bench comparison_benchmark
//!
//! # Generate detailed performance report
//! cargo bench --bench comparison_benchmark -- --save-baseline simd_analysis
//!
//! # Run specific test categories
//! cargo bench --bench comparison_benchmark encode_analysis
//! cargo bench --bench comparison_benchmark decode_analysis
//! cargo bench --bench comparison_benchmark shard_analysis
//! ```
use criterion::{BenchmarkId, Criterion, Throughput, black_box, criterion_group, criterion_main};
use rustfs_ecstore::erasure_coding::Erasure;
use std::time::Duration;
/// Performance test data configuration
struct TestData {
data: Vec<u8>,
size_name: &'static str,
}
impl TestData {
fn new(size: usize, size_name: &'static str) -> Self {
let data = (0..size).map(|i| (i % 256) as u8).collect();
Self { data, size_name }
}
}
/// Generate different sized test datasets for performance analysis
fn generate_test_datasets() -> Vec<TestData> {
vec![
TestData::new(1024, "1KB"), // Small data
TestData::new(8 * 1024, "8KB"), // Medium-small data
TestData::new(64 * 1024, "64KB"), // Medium data
TestData::new(256 * 1024, "256KB"), // Medium-large data
TestData::new(1024 * 1024, "1MB"), // Large data
TestData::new(4 * 1024 * 1024, "4MB"), // Extra large data
]
}
/// SIMD encoding performance analysis
fn bench_encode_analysis(c: &mut Criterion) {
let datasets = generate_test_datasets();
let configs = vec![
(4, 2, "4+2"), // Common configuration
(6, 3, "6+3"), // 50% redundancy
(8, 4, "8+4"), // 50% redundancy, more shards
];
for dataset in &datasets {
for (data_shards, parity_shards, config_name) in &configs {
let test_name = format!("{}_{}_{}", dataset.size_name, config_name, "simd");
let mut group = c.benchmark_group("encode_analysis");
group.throughput(Throughput::Bytes(dataset.data.len() as u64));
group.sample_size(20);
group.measurement_time(Duration::from_secs(10));
// Test SIMD encoding performance
match Erasure::new(*data_shards, *parity_shards, dataset.data.len()).encode_data(&dataset.data) {
Ok(_) => {
group.bench_with_input(
BenchmarkId::new("simd_encode", &test_name),
&(&dataset.data, *data_shards, *parity_shards),
|b, (data, data_shards, parity_shards)| {
let erasure = Erasure::new(*data_shards, *parity_shards, data.len());
b.iter(|| {
let shards = erasure.encode_data(black_box(data)).unwrap();
black_box(shards);
});
},
);
}
Err(e) => {
println!("⚠️ Skipping test {test_name} - configuration not supported: {e}");
}
}
group.finish();
}
}
}
/// SIMD decoding performance analysis
fn bench_decode_analysis(c: &mut Criterion) {
let datasets = generate_test_datasets();
let configs = vec![(4, 2, "4+2"), (6, 3, "6+3"), (8, 4, "8+4")];
for dataset in &datasets {
for (data_shards, parity_shards, config_name) in &configs {
let test_name = format!("{}_{}_{}", dataset.size_name, config_name, "simd");
let erasure = Erasure::new(*data_shards, *parity_shards, dataset.data.len());
// Pre-encode data - check if this configuration is supported
match erasure.encode_data(&dataset.data) {
Ok(encoded_shards) => {
let mut group = c.benchmark_group("decode_analysis");
group.throughput(Throughput::Bytes(dataset.data.len() as u64));
group.sample_size(20);
group.measurement_time(Duration::from_secs(10));
group.bench_with_input(
BenchmarkId::new("simd_decode", &test_name),
&(&encoded_shards, *data_shards, *parity_shards),
|b, (shards, data_shards, parity_shards)| {
let erasure = Erasure::new(*data_shards, *parity_shards, dataset.data.len());
b.iter(|| {
// Simulate maximum recoverable data loss
let mut shards_opt: Vec<Option<Vec<u8>>> =
shards.iter().map(|shard| Some(shard.to_vec())).collect();
// Lose up to parity_shards number of shards
for item in shards_opt.iter_mut().take(*parity_shards) {
*item = None;
}
erasure.decode_data(black_box(&mut shards_opt)).unwrap();
black_box(&shards_opt);
});
},
);
group.finish();
}
Err(e) => {
println!("⚠️ Skipping decode test {test_name} - configuration not supported: {e}");
}
}
}
}
}
/// Shard size sensitivity analysis for SIMD optimization
fn bench_shard_size_analysis(c: &mut Criterion) {
let data_shards = 4;
let parity_shards = 2;
// Test different shard sizes, focusing on SIMD optimization thresholds
let shard_sizes = vec![32, 64, 128, 256, 512, 1024, 2048, 4096, 8192];
let mut group = c.benchmark_group("shard_size_analysis");
group.sample_size(15);
group.measurement_time(Duration::from_secs(8));
for shard_size in shard_sizes {
let total_size = shard_size * data_shards;
let data = (0..total_size).map(|i| (i % 256) as u8).collect::<Vec<u8>>();
let test_name = format!("{shard_size}B_shard_simd");
group.throughput(Throughput::Bytes(total_size as u64));
// Check if this shard size is supported
let erasure = Erasure::new(data_shards, parity_shards, data.len());
match erasure.encode_data(&data) {
Ok(_) => {
group.bench_with_input(BenchmarkId::new("shard_size", &test_name), &data, |b, data| {
let erasure = Erasure::new(data_shards, parity_shards, data.len());
b.iter(|| {
let shards = erasure.encode_data(black_box(data)).unwrap();
black_box(shards);
});
});
}
Err(e) => {
println!("⚠️ Skipping shard size test {test_name} - not supported: {e}");
}
}
}
group.finish();
}
/// High-load concurrent performance analysis
fn bench_concurrent_analysis(c: &mut Criterion) {
use std::sync::Arc;
use std::thread;
let data_size = 1024 * 1024; // 1MB
let data = Arc::new((0..data_size).map(|i| (i % 256) as u8).collect::<Vec<u8>>());
let erasure = Arc::new(Erasure::new(4, 2, data_size));
let mut group = c.benchmark_group("concurrent_analysis");
group.throughput(Throughput::Bytes(data_size as u64));
group.sample_size(10);
group.measurement_time(Duration::from_secs(15));
let test_name = "1MB_concurrent_simd";
group.bench_function(test_name, |b| {
b.iter(|| {
let handles: Vec<_> = (0..4)
.map(|_| {
let data_clone = data.clone();
let erasure_clone = erasure.clone();
thread::spawn(move || {
let shards = erasure_clone.encode_data(&data_clone).unwrap();
black_box(shards);
})
})
.collect();
for handle in handles {
handle.join().unwrap();
}
});
});
group.finish();
}
/// Error recovery performance analysis
fn bench_error_recovery_analysis(c: &mut Criterion) {
let data_size = 512 * 1024; // 512KB
let data = (0..data_size).map(|i| (i % 256) as u8).collect::<Vec<u8>>();
// Test different error recovery scenarios
let scenarios = vec![
(4, 2, 1, "single_loss"), // Lose 1 shard
(4, 2, 2, "double_loss"), // Lose 2 shards (maximum)
(6, 3, 1, "single_loss_6_3"), // Lose 1 shard with 6+3
(6, 3, 3, "triple_loss_6_3"), // Lose 3 shards (maximum)
(8, 4, 2, "double_loss_8_4"), // Lose 2 shards with 8+4
(8, 4, 4, "quad_loss_8_4"), // Lose 4 shards (maximum)
];
let mut group = c.benchmark_group("error_recovery_analysis");
group.throughput(Throughput::Bytes(data_size as u64));
group.sample_size(15);
group.measurement_time(Duration::from_secs(10));
for (data_shards, parity_shards, loss_count, scenario_name) in scenarios {
let erasure = Erasure::new(data_shards, parity_shards, data_size);
match erasure.encode_data(&data) {
Ok(encoded_shards) => {
let test_name = format!("{data_shards}+{parity_shards}_{scenario_name}");
group.bench_with_input(
BenchmarkId::new("recovery", &test_name),
&(&encoded_shards, data_shards, parity_shards, loss_count),
|b, (shards, data_shards, parity_shards, loss_count)| {
let erasure = Erasure::new(*data_shards, *parity_shards, data_size);
b.iter(|| {
// Simulate specific number of shard losses
let mut shards_opt: Vec<Option<Vec<u8>>> = shards.iter().map(|shard| Some(shard.to_vec())).collect();
// Lose the specified number of shards
for item in shards_opt.iter_mut().take(*loss_count) {
*item = None;
}
erasure.decode_data(black_box(&mut shards_opt)).unwrap();
black_box(&shards_opt);
});
},
);
}
Err(e) => {
println!("⚠️ Skipping recovery test {scenario_name}: {e}");
}
}
}
group.finish();
}
/// Memory efficiency analysis
fn bench_memory_analysis(c: &mut Criterion) {
let data_sizes = vec![64 * 1024, 256 * 1024, 1024 * 1024]; // 64KB, 256KB, 1MB
let config = (4, 2); // 4+2 configuration
let mut group = c.benchmark_group("memory_analysis");
group.sample_size(15);
group.measurement_time(Duration::from_secs(8));
for data_size in data_sizes {
let data = (0..data_size).map(|i| (i % 256) as u8).collect::<Vec<u8>>();
let size_name = format!("{}KB", data_size / 1024);
group.throughput(Throughput::Bytes(data_size as u64));
// Test instance reuse vs new instance creation
group.bench_with_input(BenchmarkId::new("reuse_instance", &size_name), &data, |b, data| {
let erasure = Erasure::new(config.0, config.1, data.len());
b.iter(|| {
let shards = erasure.encode_data(black_box(data)).unwrap();
black_box(shards);
});
});
group.bench_with_input(BenchmarkId::new("new_instance", &size_name), &data, |b, data| {
b.iter(|| {
let erasure = Erasure::new(config.0, config.1, data.len());
let shards = erasure.encode_data(black_box(data)).unwrap();
black_box(shards);
});
});
}
group.finish();
}
// Benchmark group configuration
criterion_group!(
benches,
bench_encode_analysis,
bench_decode_analysis,
bench_shard_size_analysis,
bench_concurrent_analysis,
bench_error_recovery_analysis,
bench_memory_analysis
);
criterion_main!(benches);