fix: restore localized samples in tests (#749)

* fix: restore required localized examples

* style: fix formatting issues
This commit is contained in:
安正超
2025-10-29 13:16:31 +08:00
committed by GitHub
parent 64ba52bc1e
commit dd47fcf2a8
41 changed files with 1294 additions and 3312 deletions

View File

@@ -1,139 +1,141 @@
# RustFS 性能测试指南
# RustFS Performance Testing Guide
本文档提供了对 RustFS 进行性能测试和性能分析的完整方法和工具。
This document describes the recommended tools and workflows for benchmarking RustFS and analyzing performance bottlenecks.
## 概览
## Overview
RustFS 提供了多种性能测试和分析工具:
RustFS exposes several complementary tooling options:
1. **性能分析(Profiling** - 使用内置的 pprof 接口收集 CPU 性能数据
2. **负载测试(Load Testing** - 使用多种客户端工具模拟高并发请求
3. **监控和分析** - 查看性能指标和识别性能瓶颈
1. **Profiling** collect CPU samples through the built-in `pprof` endpoints.
2. **Load testing** drive concurrent requests with dedicated client utilities.
3. **Monitoring and analysis** inspect collected metrics to locate hotspots.
## 前置条件
## Prerequisites
### 1. 启用性能分析
### 1. Enable profiling support
在启动 RustFS 时,需要设置环境变量启用性能分析功能:
Set the profiling environment variable before launching RustFS:
```bash
export RUSTFS_ENABLE_PROFILING=true
./rustfs
```
### 2. 安装依赖工具
### 2. Install required tooling
确保系统中安装了以下工具:
Make sure the following dependencies are available:
```bash
# 基础工具
curl # HTTP 请求
jq # JSON 处理 (可选)
# Base tools
curl # HTTP requests
jq # JSON processing (optional)
# 分析工具
go # Go pprof 工具 (可选,用于 protobuf 格式)
python3 # Python 负载测试脚本
# Analysis tools
go # Go pprof CLI (optional, required for protobuf output)
python3 # Python load-testing scripts
# macOS 用户
# macOS users
brew install curl jq go python3
# Ubuntu/Debian 用户
# Ubuntu/Debian users
sudo apt-get install curl jq golang-go python3
```
## 性能测试方法
## Performance Testing Methods
### 方法 1使用专业脚本推荐
### Method 1: Use the dedicated profiling script (recommended)
项目提供了完整的性能分析脚本:
The repository ships with a helper script for common profiling flows:
```bash
# 查看脚本帮助
# Show command help
./scripts/profile_rustfs.sh help
# 检查性能分析状态
# Check profiler status
./scripts/profile_rustfs.sh status
# 收集火焰图30秒
# Capture a 30 second flame graph
./scripts/profile_rustfs.sh flamegraph
# 收集 protobuf 格式性能数据
# Download protobuf-formatted samples
./scripts/profile_rustfs.sh protobuf
# 收集两种格式的性能数据
# Collect both formats
./scripts/profile_rustfs.sh both
# 自定义参数
# Provide custom arguments
./scripts/profile_rustfs.sh -d 60 -u http://192.168.1.100:9000 both
```
### 方法 2使用 Python 综合测试
### Method 2: Run the Python end-to-end tester
Python 脚本提供了负载测试和性能分析的一体化解决方案:
A Python utility combines background load generation with profiling:
```bash
# 运行综合性能分析
# Launch the integrated test harness
python3 test_load.py
```
此脚本会:
1. 启动后台负载测试(多线程 S3 操作)
2. 并行收集性能分析数据
3. 生成火焰图用于分析
The script will:
### 方法 3使用简单负载测试
1. Launch multi-threaded S3 operations as load.
2. Pull profiling samples in parallel.
3. Produce a flame graph for investigation.
对于快速测试,可以使用 bash 脚本:
### Method 3: Simple shell-based load test
For quick smoke checks, a lightweight bash script is also provided:
```bash
# 运行简单负载测试
# Execute a lightweight benchmark
./simple_load_test.sh
```
## 性能分析输出格式
## Profiling Output Formats
### 1. 火焰图SVG 格式)
### 1. Flame graph (SVG)
- **用途**: 可视化 CPU 使用情况
- **文件**: `rustfs_profile_TIMESTAMP.svg`
- **查看方式**: 使用浏览器打开 SVG 文件
- **分析要点**:
- 宽度表示 CPU 使用时间
- 高度表示调用栈深度
- 点击可以放大特定函数
- **Purpose**: Visualize CPU time distribution.
- **File name**: `rustfs_profile_TIMESTAMP.svg`
- **How to view**: Open the SVG in a browser.
- **Interpretation tips**:
- Width reflects CPU time per function.
- Height illustrates call-stack depth.
- Click to zoom into specific frames.
```bash
# 在浏览器中打开
# Example: open the file in a browser
open profiles/rustfs_profile_20240911_143000.svg
```
### 2. Protobuf 格式
### 2. Protobuf samples
- **用途**: 使用 Go pprof 工具进行详细分析
- **文件**: `rustfs_profile_TIMESTAMP.pb`
- **分析工具**: `go tool pprof`
- **Purpose**: Feed data to the `go tool pprof` command.
- **File name**: `rustfs_profile_TIMESTAMP.pb`
- **Tooling**: `go tool pprof`
```bash
# 使用 Go pprof 分析
# Analyze the protobuf output
go tool pprof profiles/rustfs_profile_20240911_143000.pb
# pprof 常用命令
(pprof) top # 显示 CPU 使用率最高的函数
(pprof) list func # 显示指定函数的源代码
(pprof) web # 生成 web 界面(需要 graphviz
(pprof) png # 生成 PNG 图片
(pprof) help # 查看所有命令
# Common pprof commands
(pprof) top # Show hottest call sites
(pprof) list func # Display annotated source for a function
(pprof) web # Launch the web UI (requires graphviz)
(pprof) png # Render a PNG flame chart
(pprof) help # List available commands
```
## API 接口使用
## API Usage
### 检查性能分析状态
### Check profiling status
```bash
curl "http://127.0.0.1:9000/rustfs/admin/debug/pprof/status"
```
返回示例:
Sample response:
```json
{
"enabled": "true",
@@ -141,186 +143,187 @@ curl "http://127.0.0.1:9000/rustfs/admin/debug/pprof/status"
}
```
### 收集性能数据
### Capture profiling data
```bash
# 收集 30 秒的火焰图
# Fetch a 30-second flame graph
curl "http://127.0.0.1:9000/rustfs/admin/debug/pprof/profile?seconds=30&format=flamegraph" \
-o profile.svg
# 收集 protobuf 格式数据
# Fetch protobuf output
curl "http://127.0.0.1:9000/rustfs/admin/debug/pprof/profile?seconds=30&format=protobuf" \
-o profile.pb
```
**参数说明**:
- `seconds`: 收集时长1-300 秒)
- `format`: 输出格式(`flamegraph`/`svg` `protobuf`/`pb`
**Parameters**
- `seconds`: Duration between 1 and 300 seconds.
- `format`: Output format (`flamegraph`/`svg` or `protobuf`/`pb`).
## 负载测试场景
## Load Testing Scenarios
### 1. S3 API 负载测试
### 1. S3 API workload
使用 Python 脚本进行完整的 S3 操作负载测试:
Use the Python harness to exercise a complete S3 workflow:
```python
# 基本配置
# Basic configuration
tester = S3LoadTester(
endpoint="http://127.0.0.1:9000",
access_key="rustfsadmin",
access_key="rustfsadmin",
secret_key="rustfsadmin"
)
# 运行负载测试
# 4 个线程,每个线程执行 10 次操作
# Execute the load test
# Four threads, ten operations each
tester.run_load_test(num_threads=4, operations_per_thread=10)
```
每次操作包括:
1. 上传 1MB 对象
2. 下载对象
3. 删除对象
Each iteration performs:
1. Upload a 1 MB object.
2. Download the object.
3. Delete the object.
### 2. 自定义负载测试
### 2. Custom load scenarios
```bash
# 创建测试桶
# Create a test bucket
curl -X PUT "http://127.0.0.1:9000/test-bucket"
# 并发上传测试
# Concurrent uploads
for i in {1..10}; do
echo "test data $i" | curl -X PUT "http://127.0.0.1:9000/test-bucket/object-$i" -d @- &
done
wait
# 并发下载测试
# Concurrent downloads
for i in {1..10}; do
curl "http://127.0.0.1:9000/test-bucket/object-$i" > /dev/null &
done
wait
```
## 性能分析最佳实践
## Profiling Best Practices
### 1. 测试环境准备
### 1. Environment preparation
- 确保 RustFS 已启用性能分析: `RUSTFS_ENABLE_PROFILING=true`
- 使用独立的测试环境,避免其他程序干扰
- 确保有足够的磁盘空间存储分析文件
- Confirm that `RUSTFS_ENABLE_PROFILING=true` is set.
- Use an isolated benchmark environment to avoid interference.
- Reserve disk space for generated profile artifacts.
### 2. 数据收集建议
### 2. Data collection tips
- **预热阶段**: 先运行 5-10 分钟的轻量负载
- **数据收集**: 在稳定负载下收集 30-60 秒的性能数据
- **多次采样**: 收集多个样本进行对比分析
- **Warm-up**: Run a light workload for 510 minutes before sampling.
- **Sampling window**: Capture 3060 seconds under steady load.
- **Multiple samples**: Take several runs to compare results.
### 3. 分析重点
### 3. Analysis focus areas
在火焰图中重点关注:
When inspecting flame graphs, pay attention to:
1. **宽度最大的函数** - CPU 使用时间最长
2. **平顶函数** - 可能的性能瓶颈
3. **深度调用栈** - 可能的递归或复杂逻辑
4. **意外的系统调用** - I/O 或内存分配问题
1. **The widest frames** most CPU time consumed.
2. **Flat plateaus** likely bottlenecks.
3. **Deep call stacks** recursion or complex logic.
4. **Unexpected syscalls** I/O stalls or allocation churn.
### 4. 常见性能问题
### 4. Common issues
- **锁竞争**: 查找 `std::sync` 相关函数
- **内存分配**: 查找 `alloc` 相关函数
- **I/O 等待**: 查找文件系统或网络 I/O 函数
- **序列化开销**: 查找 JSON/XML 解析函数
- **Lock contention**: Investigate frames under `std::sync`.
- **Memory allocation**: Search for `alloc`-related frames.
- **I/O wait**: Review filesystem or network call stacks.
- **Serialization overhead**: Look for JSON/XML parsing hotspots.
## 故障排除
## Troubleshooting
### 1. 性能分析未启用
### 1. Profiling disabled
错误信息:`{"enabled":"false"}`
Error: `{"enabled":"false"}`
**Fix**:
解决方案:
```bash
export RUSTFS_ENABLE_PROFILING=true
# 重启 RustFS
# Restart RustFS
```
### 2. 连接被拒绝
### 2. Connection refused
错误信息:`Connection refused`
Error: `Connection refused`
检查项:
- RustFS 是否正在运行
- 端口是否正确(默认 9000
- 防火墙设置
**Checklist**:
- Confirm RustFS is running.
- Ensure the port number is correct (default 9000).
- Verify firewall rules.
### 3. 分析文件过大
### 3. Oversized profile output
如果生成的分析文件过大:
- 减少收集时间(如 15-30 秒)
- 降低负载测试的并发度
- 使用 protobuf 格式而非 SVG
If artifacts become too large:
- Shorten the capture window (e.g., 1530 seconds).
- Reduce load-test concurrency.
- Prefer protobuf output instead of SVG.
## 配置参数
## Configuration Parameters
### 环境变量
### Environment variables
| 变量 | 默认值 | 描述 |
| Variable | Default | Description |
|------|--------|------|
| `RUSTFS_ENABLE_PROFILING` | `false` | 启用性能分析 |
| `RUSTFS_URL` | `http://127.0.0.1:9000` | RustFS 服务器地址 |
| `PROFILE_DURATION` | `30` | 性能数据收集时长(秒) |
| `OUTPUT_DIR` | `./profiles` | 输出文件目录 |
| `RUSTFS_ENABLE_PROFILING` | `false` | Enable profiling support |
| `RUSTFS_URL` | `http://127.0.0.1:9000` | RustFS endpoint |
| `PROFILE_DURATION` | `30` | Profiling duration in seconds |
| `OUTPUT_DIR` | `./profiles` | Output directory |
### 脚本参数
### Script arguments
```bash
./scripts/profile_rustfs.sh [OPTIONS] [COMMAND]
OPTIONS:
-u, --url URL RustFS URL
-d, --duration SECONDS Profile duration
-d, --duration SECONDS Profile duration
-o, --output DIR Output directory
COMMANDS:
status 检查状态
flamegraph 收集火焰图
protobuf 收集 protobuf 数据
both 收集两种格式(默认)
status Check profiler status
flamegraph Collect a flame graph
protobuf Collect protobuf samples
both Collect both formats (default)
```
## 输出文件位置
## Output Locations
- **脚本输出**: `./profiles/` 目录
- **Python 脚本**: `/tmp/rustfs_profiles/` 目录
- **文件命名**: `rustfs_profile_TIMESTAMP.{svg|pb}`
- **Script output**: `./profiles/`
- **Python script**: `/tmp/rustfs_profiles/`
- **File naming**: `rustfs_profile_TIMESTAMP.{svg|pb}`
## 示例工作流程
## Example Workflow
1. **启动 RustFS**:
1. **Launch RustFS**
```bash
RUSTFS_ENABLE_PROFILING=true ./rustfs
```
2. **验证性能分析可用**:
2. **Verify profiling availability**
```bash
./scripts/profile_rustfs.sh status
```
3. **开始负载测试**:
3. **Start a load test**
```bash
python3 test_load.py &
```
4. **收集性能数据**:
4. **Collect samples**
```bash
./scripts/profile_rustfs.sh -d 60 both
```
5. **分析结果**:
5. **Inspect the results**
```bash
# 查看火焰图
# Review the flame graph
open profiles/rustfs_profile_*.svg
# 或使用 pprof 分析
# Or analyze the protobuf output
go tool pprof profiles/rustfs_profile_*.pb
```
通过这个完整的性能测试流程,你可以系统地分析 RustFS 的性能特征,识别瓶颈,并进行有针对性的优化。
Following this workflow helps you understand RustFS performance characteristics, locate bottlenecks, and implement targeted optimizations.

View File

@@ -1,239 +1,239 @@
# RustFS 文档中心
# RustFS Documentation Center
欢迎来到 RustFS 分布式文件系统文档中心!
Welcome to the RustFS distributed file system documentation center!
## 📚 文档导航
## 📚 Documentation Navigation
### 🔐 KMS (密钥管理服务)
### 🔐 KMS (Key Management Service)
RustFS KMS 提供企业级密钥管理和数据加密服务。
RustFS KMS delivers enterprise-grade key management and data encryption.
| 文档 | 描述 | 适用场景 |
| Document | Description | Audience |
|------|------|----------|
| [KMS 使用指南](./kms/README.md) | 完整的 KMS 使用文档,包含快速开始、配置和部署 | 所有用户必读 |
| [HTTP API 接口](./kms/http-api.md) | HTTP REST API 接口文档和使用示例 | 管理员和运维 |
| [编程 API 接口](./kms/api.md) | Rust 库编程接口和代码示例 | 开发者集成 |
| [配置参考](./kms/configuration.md) | 完整的配置选项和环境变量说明 | 系统管理员 |
| [故障排除](./kms/troubleshooting.md) | 常见问题诊断和解决方案 | 运维人员 |
| [安全指南](./kms/security.md) | 安全最佳实践和合规指导 | 安全架构师 |
| [KMS User Guide](./kms/README.md) | Comprehensive KMS guide with quick start, configuration, and deployment steps | Required reading for all users |
| [HTTP API Reference](./kms/http-api.md) | HTTP REST API reference with usage examples | Administrators and operators |
| [Programming API Reference](./kms/api.md) | Rust library APIs and code samples | Developers |
| [Configuration Reference](./kms/configuration.md) | Complete configuration options and environment variables | System administrators |
| [Troubleshooting](./kms/troubleshooting.md) | Diagnosis tips and solutions for common issues | Operations engineers |
| [Security Guide](./kms/security.md) | Security best practices and compliance guidance | Security architects |
## 🚀 快速开始
## 🚀 Quick Start
### 1. KMS 5分钟快速部署
### 1. Deploy KMS in 5 Minutes
**生产环境(使用 Vault**
**Production (Vault backend)**
```bash
# 1. 启用 Vault 功能编译
# 1. Enable the Vault feature flag
cargo build --features vault --release
# 2. 配置环境变量
# 2. Configure environment variables
export RUSTFS_VAULT_ADDRESS=https://vault.company.com:8200
export RUSTFS_VAULT_TOKEN=hvs.CAESIJ...
# 3. 启动服务
# 3. Launch the service
./target/release/rustfs server
```
**开发测试(使用本地后端)**
**Development & Testing (Local backend)**
```bash
# 1. 编译测试版本
# 1. Build a release binary
cargo build --release
# 2. 配置本地存储
# 2. Configure local storage
export RUSTFS_KMS_BACKEND=Local
export RUSTFS_KMS_LOCAL_KEY_DIR=/tmp/rustfs-keys
# 3. 启动服务
# 3. Launch the service
./target/release/rustfs server
```
### 2. S3 兼容加密
### 2. S3-Compatible Encryption
```bash
# 上传加密文件
# Upload an encrypted object
curl -X PUT https://rustfs.company.com/bucket/sensitive.txt \
-H "x-amz-server-side-encryption: AES256" \
--data-binary @sensitive.txt
# 自动解密下载
# Download with automatic decryption
curl https://rustfs.company.com/bucket/sensitive.txt
```
## 🏗️ 架构概览
## 🏗️ Architecture Overview
### KMS 三层安全架构
### Three-Layer KMS Security Architecture
```
┌─────────────────────────────────────────────────┐
应用层
Application Layer
│ ┌─────────────┐ ┌─────────────┐ │
│ │ S3 API │ │ REST API │ │
│ │ S3 API │ │ REST API │ │
│ └─────────────┘ └─────────────┘ │
├─────────────────────────────────────────────────┤
加密层
│ ┌─────────────┐ 加密 ┌─────────────────┐
│ │ 对象数据 │ ◄───► │ 数据密钥 (DEK) │
│ └─────────────┘ └─────────────────┘
Encryption Layer
│ ┌─────────────┐ Encrypt ┌─────────────────┐ │
│ │ Object Data │ ◄─────► │ Data Key (DEK) │ │
│ └─────────────┘ └─────────────────┘ │
├─────────────────────────────────────────────────┤
密钥管理层
│ ┌─────────────────┐ 加密 ┌──────────────┐
│ │ 数据密钥 (DEK) │ ◄────│ 主密钥 │
│ └─────────────────┘ │ (Vault/HSM) │
│ └──────────────┘
Key Management Layer
│ ┌─────────────────┐ Encrypt ┌──────────────┐ │
│ │ Data Key (DEK) │ ◄───────│ Master Key │
│ └─────────────────┘ │ (Vault/HSM) │ │
└──────────────┘ │
└─────────────────────────────────────────────────┘
```
### 核心特性
### Key Features
-**多层加密**: Master Key → DEK → Object Data
-**高性能**: 1MB 流式加密,支持大文件
-**多后端**: Vault (生产) + Local (测试)
-**S3 兼容**: 支持标准 SSE-S3/SSE-KMS
-**企业级**: 审计、监控、合规支持
-**Multi-layer encryption**: Master Key → DEK → Object Data
-**High performance**: 1 MB streaming encryption with large file support
-**Multiple backends**: Vault (production) + Local (testing)
-**S3 compatibility**: Supports standard SSE-S3/SSE-KMS headers
-**Enterprise-ready**: Auditing, monitoring, and compliance features
## 📖 学习路径
## 📖 Learning Paths
### 👨‍💻 开发者
### 👨‍💻 Developers
1. 阅读 [编程 API 接口](./kms/api.md) 了解 Rust 库使用
2. 查看代码示例学习集成方法
3. 参考 [故障排除](./kms/troubleshooting.md) 解决问题
1. Read the [Programming API Reference](./kms/api.md) to learn the Rust library
2. Review the sample code to understand integration patterns
3. Consult [Troubleshooting](./kms/troubleshooting.md) when issues occur
### 👨‍💼 系统管理员
### 👨‍💼 System Administrators
1. 从 [KMS 使用指南](./kms/README.md) 开始
2. 学习 [HTTP API 接口](./kms/http-api.md) 进行管理
3. 详细阅读 [配置参考](./kms/configuration.md)
4. 设置监控和日志
1. Start with the [KMS User Guide](./kms/README.md)
2. Learn the [HTTP API Reference](./kms/http-api.md) for management tasks
3. Study the [Configuration Reference](./kms/configuration.md) in depth
4. Configure monitoring and logging
### 👨‍🔧 运维工程师
### 👨‍🔧 Operations Engineers
1. 熟悉 [HTTP API 接口](./kms/http-api.md) 进行日常管理
2. 掌握 [故障排除](./kms/troubleshooting.md) 技能
3. 了解 [安全指南](./kms/security.md) 要求
4. 建立运维流程
1. Become familiar with the [HTTP API Reference](./kms/http-api.md) for day-to-day work
2. Master the [Troubleshooting](./kms/troubleshooting.md) procedures
3. Understand the requirements in the [Security Guide](./kms/security.md)
4. Establish operational runbooks
### 🔒 安全架构师
### 🔒 Security Architects
1. 深入学习 [安全指南](./kms/security.md)
2. 评估威胁模型和风险
3. 制定安全策略
1. Dive into the [Security Guide](./kms/security.md)
2. Evaluate threat models and risk posture
3. Define security policies
## 🤝 贡献指南
## 🤝 Contribution Guide
我们欢迎社区贡献!
We welcome community contributions!
### 文档贡献
### Documentation Contributions
```bash
# 1. Fork 项目
# 1. Fork the repository
git clone https://github.com/your-username/rustfs.git
# 2. 创建文档分支
# 2. Create a documentation branch
git checkout -b docs/improve-kms-guide
# 3. 编辑文档
# 编辑 docs/kms/ 下的 Markdown 文件
# 3. Edit the documentation
# Update Markdown files under docs/kms/
# 4. 提交更改
# 4. Commit the changes
git add docs/
git commit -m "docs: improve KMS configuration examples"
# 5. 创建 Pull Request
# 5. Open a Pull Request
gh pr create --title "Improve KMS documentation"
```
### 文档规范
### Documentation Guidelines
- 使用清晰的标题和结构
- 提供可运行的代码示例
- 包含适当的警告和提示
- 支持多种使用场景
- 保持内容最新
- Use clear headings and structure
- Provide runnable code examples
- Include warnings and tips where appropriate
- Support multiple usage scenarios
- Keep the content up to date
## 📞 支持与反馈
## 📞 Support & Feedback
### 获取帮助
### Getting Help
- **GitHub Issues**: https://github.com/rustfs/rustfs/issues
- **讨论区**: https://github.com/rustfs/rustfs/discussions
- **文档问题**: 在相关文档页面创建 Issue
- **安全问题**: security@rustfs.com
- **Discussion Forum**: https://github.com/rustfs/rustfs/discussions
- **Documentation Questions**: Open an issue on the relevant document
- **Security Concerns**: security@rustfs.com
### 问题报告模板
### Issue Reporting Template
报告问题时请提供:
When reporting a problem, please provide:
```markdown
**环境信息**
- RustFS 版本: v1.0.0
- 操作系统: Ubuntu 20.04
- Rust 版本: 1.75.0
**Environment**
- RustFS version: v1.0.0
- Operating system: Ubuntu 20.04
- Rust version: 1.75.0
**问题描述**
简要描述遇到的问题...
**Issue Description**
Summarize the problem you encountered...
**重现步骤**
1. 步骤一
2. 步骤二
3. 步骤三
**Reproduction Steps**
1. Step one
2. Step two
3. Step three
**期望行为**
描述期望的正确行为...
**Expected Behavior**
Describe what you expected to happen...
**实际行为**
描述实际发生的情况...
**Actual Behavior**
Describe what actually happened...
**相关日志**
**Relevant Logs**
```bash
# 粘贴相关日志
# Paste relevant log excerpts
```
**附加信息**
其他可能有用的信息...
**Additional Information**
Any other details that may help...
```
## 📈 版本历史
## 📈 Release History
| 版本 | 发布日期 | 主要特性 |
| Version | Release Date | Highlights |
|------|----------|----------|
| v1.0.0 | 2024-01-15 | 🎉 首个正式版本,完整 KMS 功能 |
| v0.9.0 | 2024-01-01 | 🔐 KMS 系统重构,性能优化 |
| v0.8.0 | 2023-12-15 | ⚡ 流式加密1MB 块大小优化 |
| v1.0.0 | 2024-01-15 | 🎉 First official release with full KMS functionality |
| v0.9.0 | 2024-01-01 | 🔐 KMS system refactor with performance optimizations |
| v0.8.0 | 2023-12-15 | ⚡ Streaming encryption with 1 MB block size tuning |
## 🗺️ 开发路线图
## 🗺️ Roadmap
### 即将发布 (v1.1.0)
### Coming Soon (v1.1.0)
- [ ] 密钥自动轮转
- [ ] HSM 集成支持
- [ ] Web UI 管理界面
- [ ] 更多合规性支持 (SOC2, HIPAA)
- [ ] Automatic key rotation
- [ ] HSM integration support
- [ ] Web UI management console
- [ ] Additional compliance support (SOC2, HIPAA)
### 长期规划
### Long-Term Plans
- [ ] 多租户密钥隔离
- [ ] 密钥导入/导出工具
- [ ] 性能基准测试套件
- [ ] Multi-tenant key isolation
- [ ] Key import/export tooling
- [ ] Performance benchmarking suite
- [ ] Kubernetes Operator
## 📋 文档反馈
## 📋 Documentation Feedback
帮助我们改进文档!
Help us improve the documentation!
**这些文档对您有帮助吗?**
- 👍 很有帮助
- 👌 基本满意
- 👎 需要改进
**Was this documentation helpful?**
- 👍 Very helpful
- 👌 Mostly satisfied
- 👎 Needs improvement
**改进建议**
请在 GitHub Issues 中提出具体的改进建议。
**Suggestions for improvement:**
Share specific ideas via GitHub Issues.
---
**最后更新**: 2024-01-15
**文档版本**: v1.0.0
**Last Updated**: 2024-01-15
**Documentation Version**: v1.0.0
*感谢使用 RustFS我们致力于为您提供最好的分布式文件系统解决方案。*
*Thank you for using RustFS! We are committed to delivering the best distributed file system solution.*

File diff suppressed because it is too large Load Diff